Delaware River Basin Commission

The Science of Flow Management

Amy L. Shallcross, P.E. Manager, Water Resource Operations

Water Resources Association of the Delaware River Basin

September 22, 2020

Delaware River and Basin

- Main stem (Hancock NY => Ocean) is 330 miles long No Dams
- The River forms interstate boundaries over its entire length
- Watershed drains 13,539 square miles in 4 states
- Drinking water for 13.3 million people (approximately 5 % of the U.S. population)
- Water withdrawals exceed 6.4 billion gallons/day
- Significant Exports to NYC (up to 800 MGD) and NJ (up to 100 MGD)
- Contributes over \$21B in economic value

Flow Management

* Goals

- * Recreation
- * Flood Risk/Damage Reduction
- * Water Supply Low flow augmentation
- * Water Quality
- * Aquatic Life
- * Navigation
- * Power Generation
- * Resources (FINITE)
 - * Storage
 - * Run-of-river

Delaware River Sojourn

Water Users

http://wikimapia.org/21274124/Kimberly-Clark-Inc-Chester-Papermill#/photo/1905408

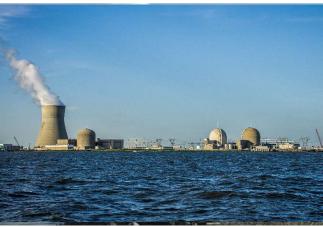
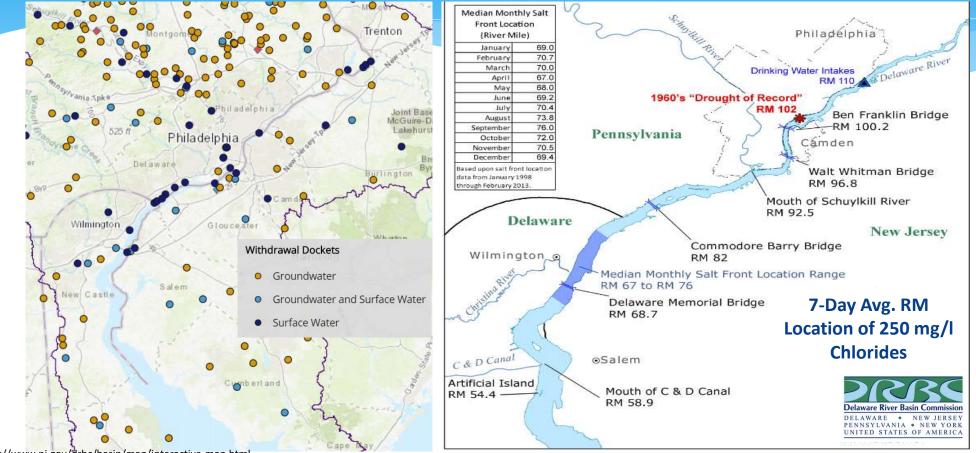



Photo: Peretz Partensky, <u>https://www.flickr.com/photos/ifl/7238282472/in/</u> album-72157629823114004/; unedited

- * Drinking Water Providers
- * Manufacturing
- * Refining
- * EnergyProduction

Water Supply

https://www.nj.gov/drbc/basin/map/interactive-map.html

Types and Mechanisms

- * Flood Risk Mitigation
 - * Passive (dry dams, controlled outlet)
 - * Pro-active (pre-event releases)
- Water Supply (rule curves, phased limits)
- * Low Flow Augmentation
 - * Flow Objectives
 - * Conservation Releases (static, tied to inflow, tied to storage)
 - * Water quality based (pH, DO, Temp)
 - * Consumptive Use replacement
- * Forecast Informed Reservoir Operations (FIRO, NYC Operations Support Tool)

Background

Water Supply and Droughts

- * New York City -Reservoirs
- New Jersey Run of River - Canal
- * Pennsylvania Run of River

- * 1929-1931 Drought
- * 1931 Supreme Court Decree
- * 1954 Amended Supreme Court Decree
- * 1964-67 Drought
- * 1983 Good Faith Agreement
- * 2007 Flexible Flow
 Management Program

Key Terms of the Decree

1954

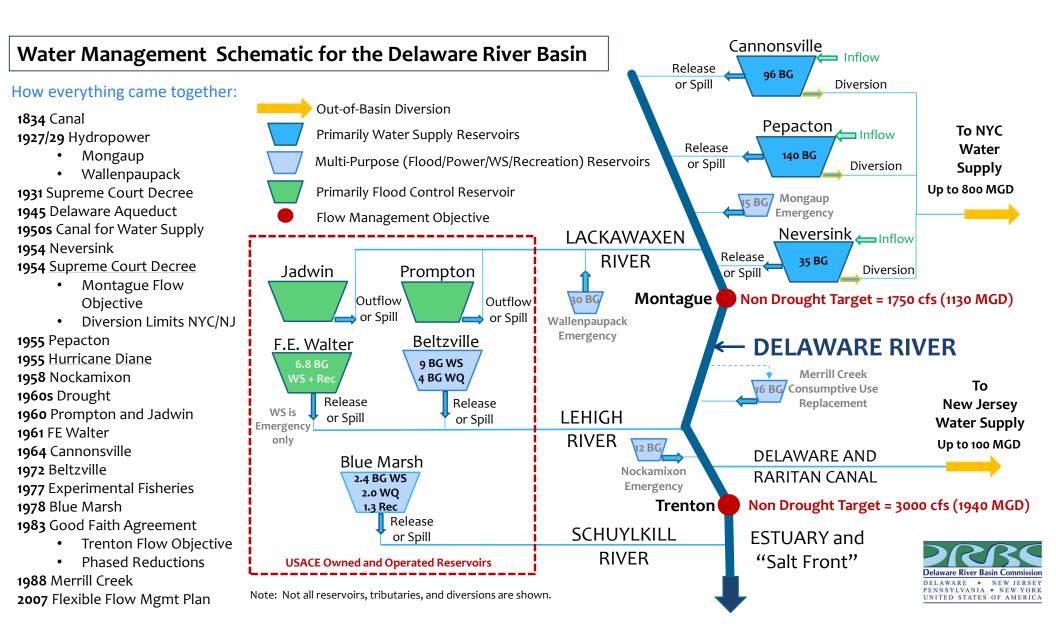
- * Out-of-basin diversions for NJ (100 mgd) an d NYC (800 mgd)
- * **Compensating releases** to maintain flow to the lower portion of the River (NYC responsibility)
 - * Flow objective at Montague, NJ
 - * "Excess" water between 6/15 and 3/15
- * Treatment of Port Jervis Sewage (NYC responsibility) improve water quality going downstream
- * Establish River Master to administer Decree

Key Terms of the Good Faith Agreement

1983

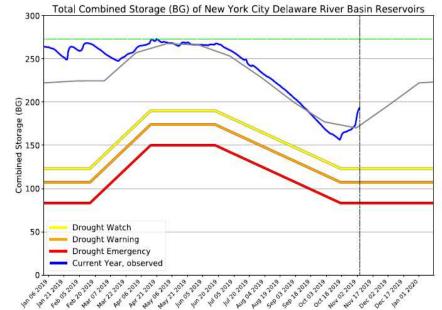
- * Established drought operating curves
- * Created Trenton Flow Objective
- * Phased reductions of Diversions and Flow Objectives
- * Banking "Excess Water"
- Provided enhanced conservation releases during normal conditions

Trenton Flow Objective


Concept:


- Based on drought status
 - ✓ Basinwide NYC Storage
 - Lower Basin Beltzville and Blue Marsh Storage
- ✓ Varies Seasonally
- Varies with location of the "salt front" (drought emergency)

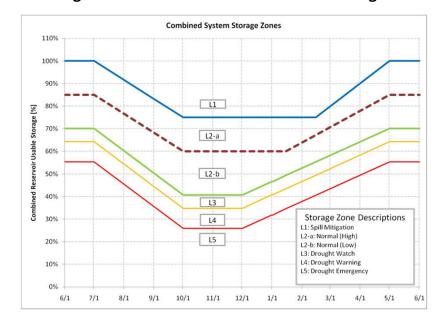
Goals:


- ✓ Salinity Repulsion
 - ✓ Drinking Water
 - ✓Industry
 - ✓Power
- ✓ Freshwater Inflows to Estuary

Sources of Water for Flow Objectives

Reservoir Operating Programs

Operating Program	1950	1960	1970	1980	1990	2000	2010	2020
Year	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8
Reservoir Completed	A B C	DE F	G H	1				
FE Walter Drought		XX		X X X	X	X		
FE Walter Recreation						F	E Walter Recreation	Program
FFMP 2017 - 2028								
FFMP 2011-2016								
FFMPo8								
FFMP07								
D77-20-CP Revision 9				D-7	7 20 CP _		Flexible Flov	v
D77-20-CP Revision 8					Revisions —		Managemen	
D77-20-CP Revision 7				difu				
D77-20-CP Revision 6							Programs	
D77-20-CP Revision 5								
D77-20-CP Revision 4								
D77-20-CP Revision 3								
D77-20-CP Revision 2								
D77-20-CP Revision 1								
D77-20-CP								
Decree				k a ovnorimontal	ficharias ralazsa r	rograme		
Pre-Decree			d.	<mark>k.a. exp</mark> erimental	instituties release p			
X= Reservoir Cons	truction Completed [/			D=Promtpon and Jadw em were constructed		nnonsville, G=Belzville re approximate.	, H=Blue Marsh, I=Me	errill Creek. Lake
	Drought Watch or W			Drought Emergency		X Water Stored in FE	Walter for Drought R	aliaf


Conservation releases – flow objectives – out-of-basin diversions – flood mitigation – Excess Release Quantity

Flexible Flow Management Program

Delaware Basin Flow Objectives					
	Montague	Trenton			
NYC Storage Condition	(cfs)	(cfs)			
Normal (L1, L2)	1,750	3,000			
Drought Watch (L3)	1,650	2,700			
Drought Warning (L4)	1,550	2,700			
Drought Emergency (L5)	1,100-1,650*	2,500-2,900*			
Severe Drought (to be negotia	ited depending u	pon conditions)			
* Varies with time of year and	location of salt fro	ont			

Figure 1 Drought Zones based on NYC Combined Storage

7 days average location of Salt Front	Flow Objectives During Drought Emergencies						
7-day average location of Salt Front		Montague, NJ			Trenton, NJ (Gage+Blue Marsh Releases)		
River Mile	Dec-	May-	Sept-	Dec-	May-	Sept-	
	Apr.	Aug.	Nov.	Apr.	Aug.	Nov.	
Upstream of R.M. 92.5	1,600	1,650	1,650	2,700	2,900	2,900	
Between R.M. 87.0 and R.M. 92.5	1,350	1,600	1,500	2,700	2,700	2,700	
Between R.M. 82.9 and R.M. 87.0	1,350	1,600	1,500	2,500	2,500	2,500	
Downstream of R.M. 82.9	1,100	1,100	1,100	2,500	2,500	2,500	

PHASED REDUCTIONS

Drought	Diversions		
Status	NYC	NJ	
Normal	800	100	
Watch	680	100	
Warning	560	90	
Emergency	520	80	

Key Considerations

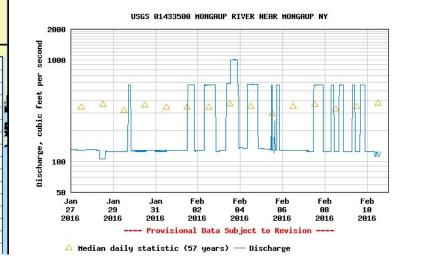
- * What is already in the river?
- * What is leaving the river?
- * What gets into the river?
- * What else is happening?
- * What source is available?
- * How fast will it get there?
- * Are there any adjustments?

- * baseflow
- * withdrawals, evaporation, exfiltration
- * runoff, releases, discharges
- * boating releases, drawdown, spills
- * USACE, NYC, PADEP, Hydropower
- * 2-6 days
- * drought conditions

How quickly will baseflow drop?

Will it get there on time?

	Hou	rs	Days		
	Montague	Trenton	Montague	Trenton	
Cannonsville	48	96	2	۷	
Pepacton	60	108	2.5	4.5	
Neversink	33	84	1.4	3.5	
Wallenpaupack	16	64	0.7	2	
Rio	8	56	0.3	2	
Merrill Creek		24		1	
FE Walter	44	60		2.5	
Beltzville		32		2	
Nockamixon		12		0.5	
	Philadelphia				
Blue Marsh		38			

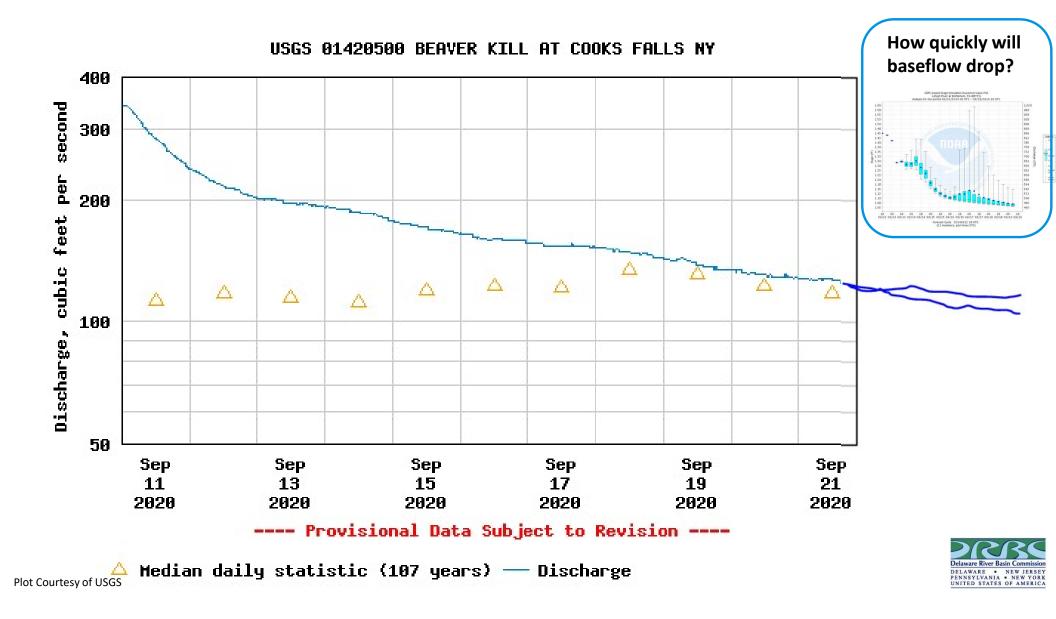

25%

95%

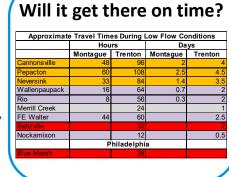
Foreca Cycle

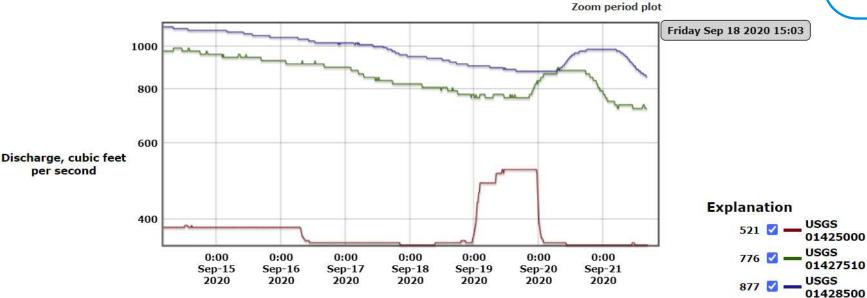
Time of Analysis

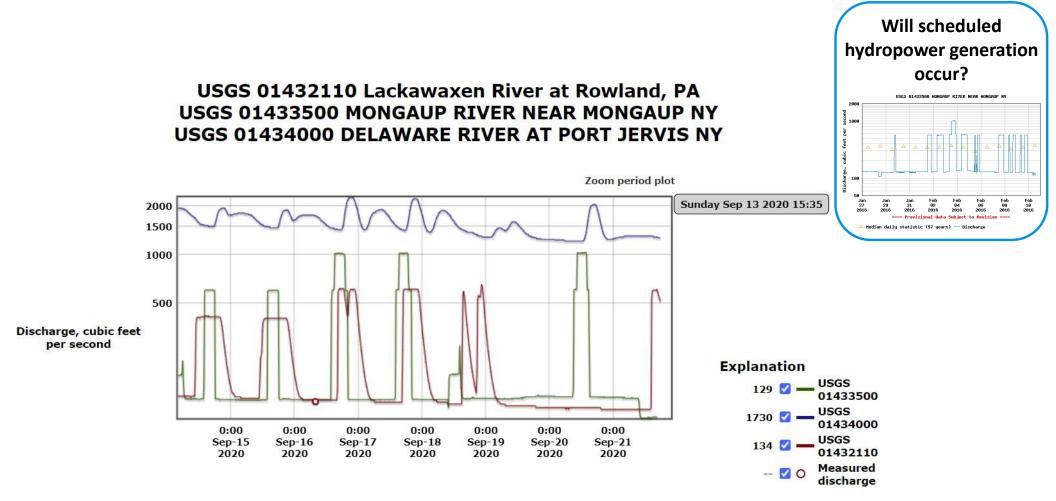
Will scheduled hydropower release occur?

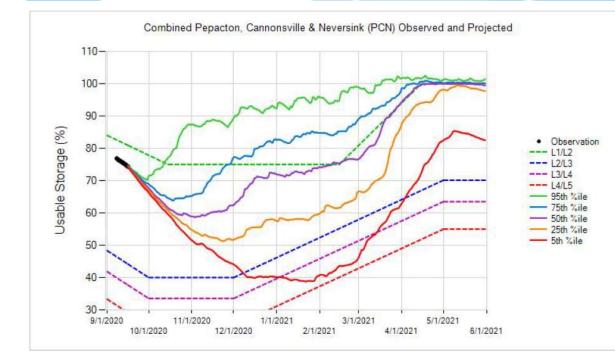

Will the River Master meet Montague?

What is NJWSA taking from the Canal?


Are there recreation releases from reservoirs?




USGS 01425000 WEST BRANCH DELAWARE RIVER AT STILESVILLE NY USGS 01427510 DELAWARE RIVER AT CALLICOON NY USGS 01428500 DELAWARE R ABOVE LACKAWAXEN R NEAR BARRYVILLE NY


Plot Courtesy of USGS

Plot Courtesy of USGS

NYC Operations Support Tool

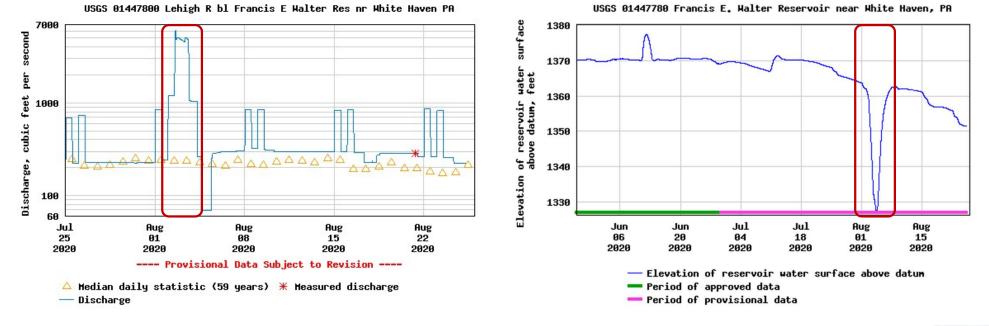
Example of FIRO

- Mass Balance Approach
- Today' Storage
- Expected Inflow until June 1 (forecasts)
- Expected Diversions
- Amount needed to be full on June 1
- Amount available to release
- Probability of Refill
- SELF-CORRECTING

Example – FE Walter Reservoir – White Water

Photo: Kanvanagh

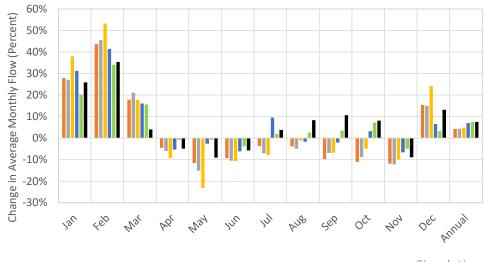
7000 Discharge, cubic feet per second 1000 AAAAAAAAA ΔΔ \triangle 100 60 Aug 15 Aug Jul Aug Aug 25 01 08 22 2020 2020 2020 2020 2020 ---- Provisional Data Subject to Revision ----


△ Median daily statistic (59 years) 米 Measured discharge — Discharge

Plot Courtesy of USGS

USGS 01447800 Lehigh R bl Francis E Walter Res nr White Haven PA

Example – FE Walter Reservoir – Flood Mitigation



Plots Courtesy of USGS

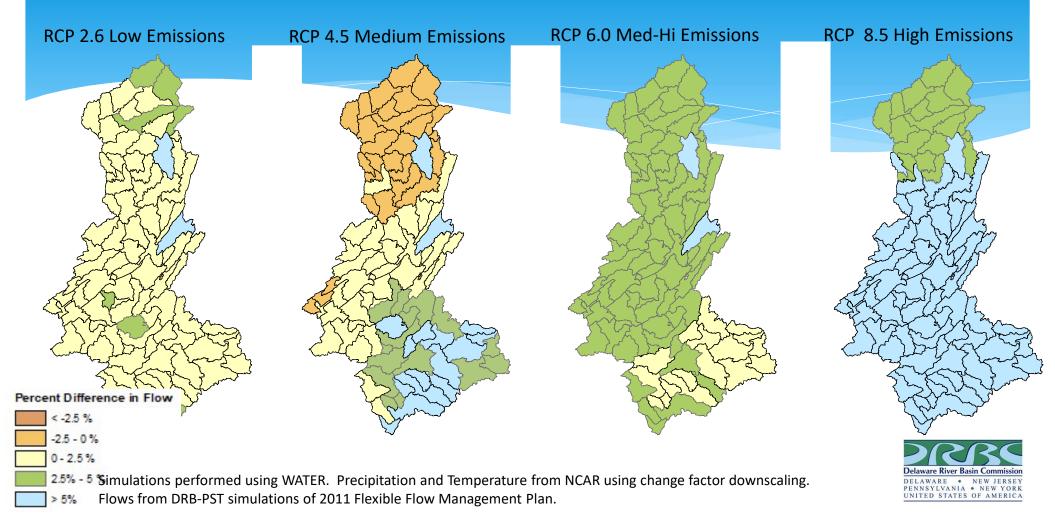
Climate Change Impacts to Flow

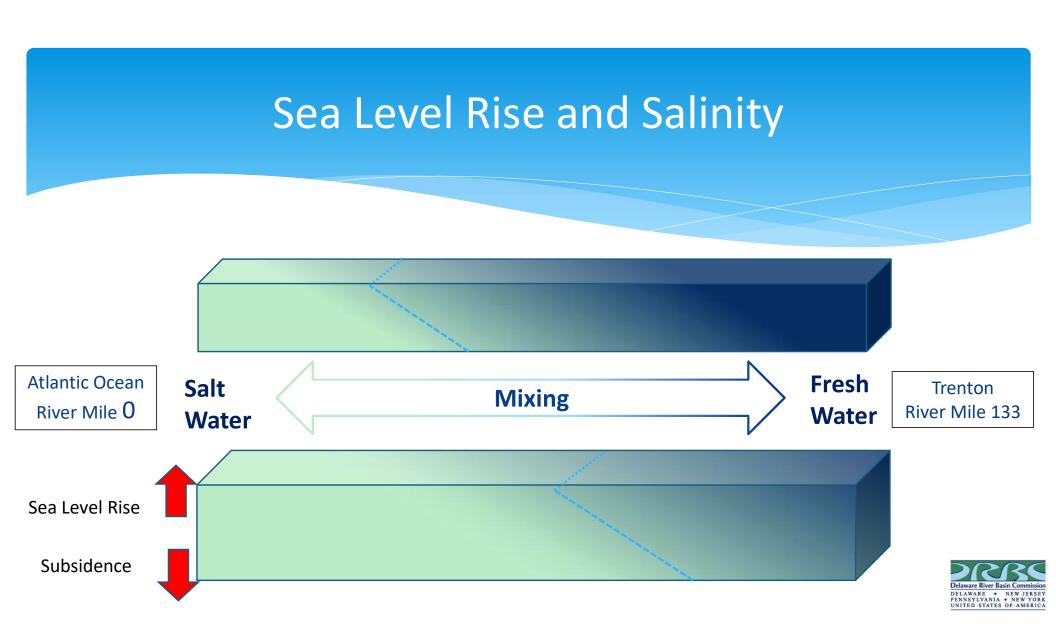
Beltzville

Pepacton

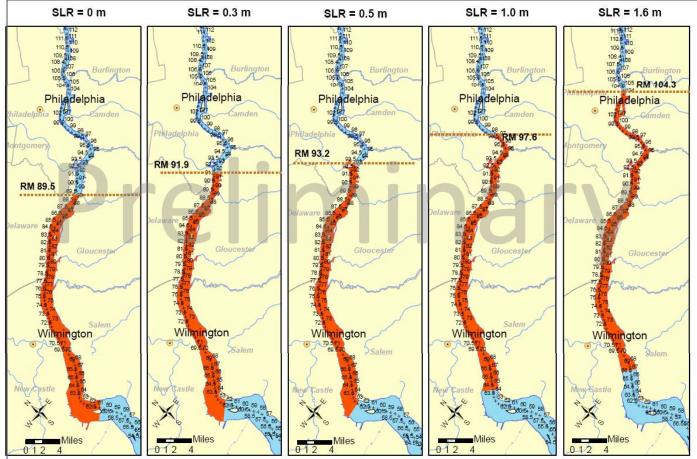
FE Walter

■ Cannonsville ■ Neversink


Blue Marsh


- * Flows modestly increase
- * Seasonality changes
- * Higher temps means less snow
- * Less snow means less snowmelt
- Increased evapotranspiration offsets increased precipitation

Simulations performed using WATER. Precipitation and Temperature from NCAR using change factor downscaling. Flows from DRB-PST simulations of 2011 Flexible Flow Management Plan.



Simulated Percent Change in Average Annual Flow by 2060

Range of Salt Front Movement with dry conditions and different sea levels

Simulated salt front range during 4-months of low flow conditions

With dry conditions similar to 2002 and SLR of 0.5 m or higher, salt front may move upstream of the Schuylkill River

DRBC. EFDC 3D Model - Preliminary Results

Flow Management

- * Balancing of Goals Resources
- * Evolves over time
- * Consideration of a complex range of factors
- * May be impacted by climate change

QUESTIONS?

Amy Shallcross Amy.Shallcross@drbc.gov

609-477-7232

