Implementation of PCB Pollutant Minimization Plans for Small Municipal Wastewater Utilities

Thomas Amidon
Senior Associate
Omni Environmental LLC

Outline

- PCB PMP Implementation
 - Objectives
 - Overall Approach
- Identifying Potential Sources
- Influent Trackback Sampling
- Assessing PCB Data Results
- Measures to address PCB sources
- Discussion

Objectives and Overall Approach

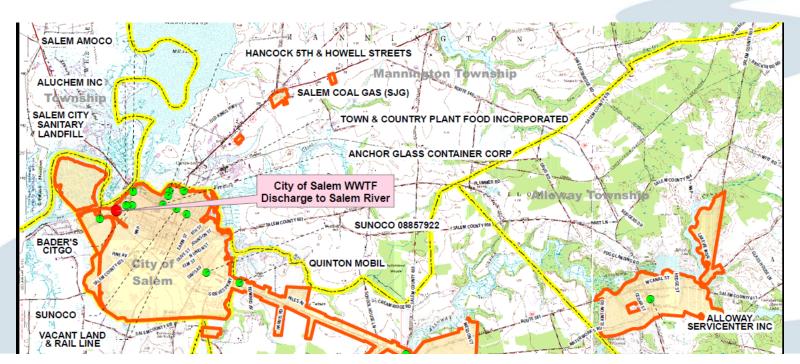
- Objective of PCB PMP Implementation: to reduce the discharge of PCB loadings to the Delaware River through identification and elimination of sources
 - Demonstrate good faith effort
 - Identify and reduce any "low hanging fruit"
 - Efficiently identify and eliminate potential sources
 - Contain costs
 - Strategic monitoring (avoid 1668A when possible)
 - Avoid araclor methods unless you have ID'd specific araclors
 - Method 680/8270 modified to capture PCB congeners instead of SVOCs
 - Skip the blank
 - Document benefits of existing maintenance and upgrades
- Overall Approach
 - Identify Potential Sources
 - Search Collection System
 - Isolate PCB Sources

Identifying Potential Sources

- General PCB Source categories
- GIS Assessment
 - Land use composition
 - Known Contaminated Sites
- Inventory of On-Site Equipment at WWTP
 - ♦ Transformers, chemical storage, oils and lubricants
- Operator Interview and Windshield Survey of Sewer Service Area

General PCB Source categories

Table 2: General PCB Source Categories


Source Category	Pathway	
PCB Source in Collection System	Direct input into collection system	
PCB Source in Service Area but not in Collection System	Extraneous flow into collection system	
Air Deposition	Air to water transport, air to soil transport	

GIS Assessment

- Significant Industrial Users
- Land use composition (industrial areas and transportation infrastructure)

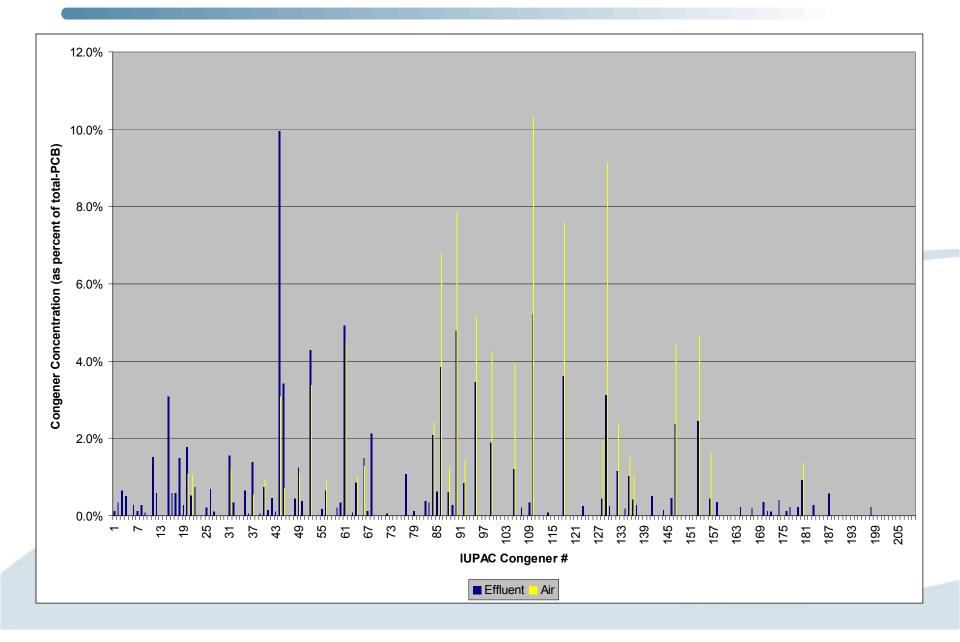
Known Contaminated Sites

What to look for in windshield survey

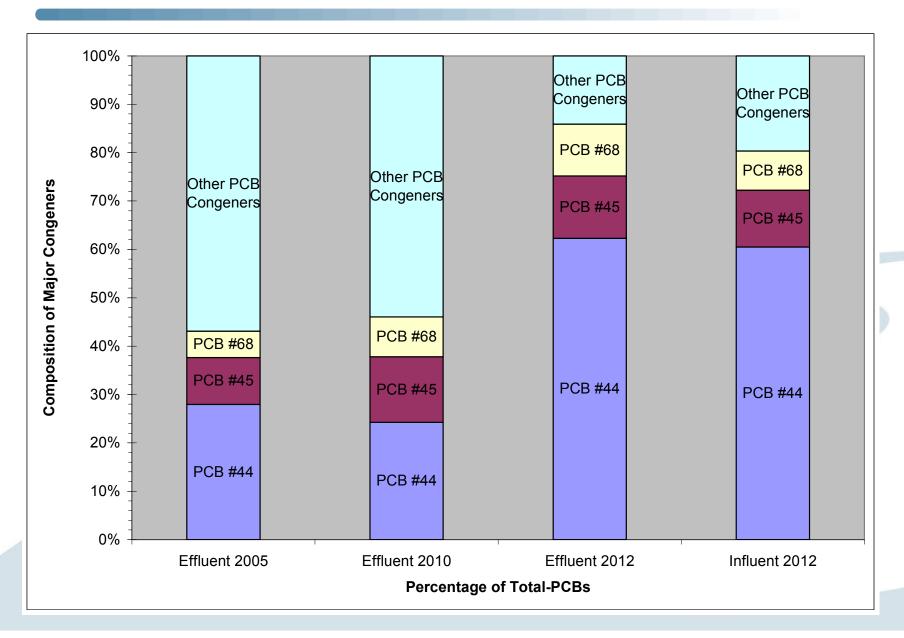
- Things to look for:
 - Industrial areas
 - Industrial Dump Sites
 - Landfills
 - Above ground storage facilities
 - Auto repair shops
 - Machine shops
 - DPW sites
 - Transformer Stations
 - Railroad Stations and Corridors
 - Military Installations
 - Electronics Manufacturing Plants
 - Automobile Service Stations

Influent Trackback Sampling

- First Cut Sampling
 - Air Sample (24-hour blank)
 - Influent Sample
 - Based on results:
 - Decide whether to proceed with Iterative Search phase
 - Select appropriate sampling method for subsequent influent sampling
- Iterative Searches
 - performed coincident with effluent sampling
 - one or two rounds of geographic isolation within collection system
 - one or two rounds of potential source isolation within collection system
- Confirmation
 - repeat source isolation sampling


Assessing PCB Data Results

- Applying DRBC QC rules regarding blanks
 - Rinsate blank contamination acceptance rules:
 - An individual congener cannot exceed 40 pg/L
 - If associated sample concentration exceeds 3× the amount in the blank, then no action is required
 - If congener is not found in the associated field sample, then no action is required
 - ♦ =IF(OR(SAMPLE="",SAMPLE=0),E5,IF(BLANK<=40, SAMPLE,IF(SAMPLE>BLANK*3, SAMPLE,"ERROR")))
 - The total PCB concentration cannot exceed 600 pg/L
- Total- and penta-PCB comparisons
- Fingerprint Analysis


Air and Effluent Congener Composition

Analysis of Congener Composition

Evaluation of Treatment Efficiency and Influent Source Trackdown

SAMPLE	Total-PCBs	Penta-PCBs
Effluent (existing treatment)	2,831	302
Effluent (pilot filtration)	1,420	243
Effluent (pilot coagulation + filtration)	1,529	304
Influent - Main	186,045	87,498
Influent - Pump #1	15,822,452	8,626,700
Influent - Pump #12	11,956	3,499
Influent - Pump #5	7,328	1,403

Measures to address PCB sources

- Maintenance and upgrading of sewer lines (cleaning, rehabilitation, and lining)
- Identify source for regulatory action
 - e.g. generating station
- Contact electric company and request location of all transformers not certified as PCB-free, as well as date of last inspection
- Document impact of treatment upgrades

Discussion

Thomas Amidon Omni Environmental LLC TAmidon@Omni-Env.com 609-454-4558

